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Page 63 (table I(a) - Concluded):

For Wing 430:

Under column heading -2-:
Wy,
Fourth row, for M = 1.15470, change .51l to .565
Sixth row, for M = 1.41421, change .680 to .696

For Wing 400:
Under column heading %La

R
Sixth row, for M = 1.41421, change 4.100 to 4.765
Under column heading gt-

Fourth row, for M = 1.15470, change .753 to .690

Corresponding to these changes in teble I(a), changes in figures 10,
21, and 22 should be made as follows:

Page T6: In figure 10, the square symbol plotted for M = 1l.41k4
at V[Vg = 4.100 should be at V[/Vg = 4.765. (The fairing for

the calculated curve would change accordingly.)

Page 87: In figure 21, the square symbol for M = 1.155 at
wfwy = 0.511 should be at wfw, = 0.565, and the square symbol

for M = 1.414 at wfw, = 0.680 should be at wfwy = 0.696.
(The fairing for the calculated curve would change accordingly.)

Page 88: In figure 22, the square symbol plotted for M = 1.155
at ofwy = 0.753 should be at wfwy = 0.690. (The fairing for
the calculated curve would change accordingly.)

Page 92: In figure 26, the circular (experimental) test point plotted
for M =0.839 at ofwy = 0.208 should be at wfwy = 0.3kL,
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RESEARCH MEMORANDUM

CALCULATION OF FLUTTER CHARACTERISTICS FOR FINITE-SPAN
SWEPT OR UNSWEPT WINGS AT SUBSONIC AND SUPERSONIC
SPEEDS BY A MODIFIED STRIP ANALYSIS

By E. Carson Yates, dJr.
STMMARY

A method hes been developed for calculating flutter characteristics
of finite-span swept or unswept wings at subsonic and supersonic speeds.
The method is basically a Rayleigh type eanelysis and is illustrated with
uncoupled vibration modes although coupled modes can be used. The aero-
dynemic loadings sre based on distributions of section lift-curve slope
and locsl aserodynsmic center calculated from three-dimensional steedy-
flow theory. These distributions are used in conjunction with the
"effective engle-of-attack distribution resulting from each of the
assumed vibration modes in order to obtain values of section 1lift and
pitching moment. Circulation functions modifled on the basis of loadings
for two-dimensionel airfoils oscillating in a compressible flow are
employed to account for the effects of oscillatory motion on the magni-
tudes and phase angles of the 11ft and moment vectors.

Flutter cheracteristics have been calculsted by thls method for
12 wings of varying sweep angle, aspect ratio, taper ratio, and center-
of-gravity position at Mach numbers from O to as high as 1.75. Compari-
sons of the results with experimental flutter data indicate that this
method glves generally good flutter results for a broad range of wings.

INTRODUCTION

Much of the difficulty encountered in attempting to predict flutter
characteristics for finlte-span swept and unswept wings at subsonic and
supersonic speeds results from inadequate representation of the distri-
butions of oscillating aerodynamic loasds on such wings. For both sub-
sonic and supersonic espeeds a number of methods exist for evaluating
three-dimensional oscillating loeds (refs. 1 to 21, for example). These
methods involve verying degrees of rigor, but all are characterized by
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the relatively extensive amount of computation required. In all of these
procedures it is necessary to recalculaste the loading with each change of
reduced frequency. This fact further increases the amount of computation
requlred because in flutter prediction the reduced frequency at flutter

is not usually found directly. Because the calculations ere complex end
lengthy and because many of the procedures have not been proved in gen-

eral application, the use of these methods in flutter prediction has been

limited.

A procedure commonly used in the solution of practical flutter prob-
lems involving finite wings is a modsl-type analysis similar to that
employed by Barmby, Cunninghem, and Garrick for swept wings (ref. 22)
and by Smilg and Wasserman for unswept wings (ref. 23). These methods,
&s presented in references 22 and 23, employ two-dimensional incompres-
sible aerodynamic forces and moments and thus do not teke into sccount
the serodynamic effects of finite span and compressibility.

The present report presents an approximste method of flutter cal-
culation based on a simplified representation of the three-dimensionsl ~—
aerodynamic loeding which 1s shown to be applicable to a wide varlety
of wing plan forms at both subsonic and supersonic speeds. The present
method 1is also based on a modal analysis, but the aerodynamic effects
of finlte span, taper, and compressibility are accounted for by utilizing
modified aerodynamic loadings based on spanwise distributions of section
lift-curve slope and local serodynemic center calculated from well-known
subsonic (ref. 24) or supersonic (refs. 25 and 26) three-dimensional
steady-flow theory for flat, rigid wings. The distributions of sectilon
1ift and pitching moment on oscillating flexible wings are obtalned by
employing these distributions of 1lift-curve slope and aerodynamlc center
for flat rigid wings in conjunction with the "effective" angle-of-attack
distribution resulting from oscillation of the wing in each of the assumed
vibration modes. The effect of oscillatory motion on the magnitudes and
phase angles of the 1ift and moment vectors is represented approximstely
by modifying the famillier circulation functions of Theodorsen by utilizing
aserodynamic flutter coefficients given by Jordan (ref. 27) for two-
dimensional asirfoils oscillating in subsonic or supersonic flow. A
detalled description of the procedure for msking flutteTr calculations is

glven in the appendixes.

By representing the oseillating aerodynemic loads in this manner
the necessity of recalculating the load distributions for each value of
reduced frequency 1s avoided, since only the modified circulation func-
tions vary with frequency, and these in turn are assumed not to vary
along the span. The bending end twisting deformation of individual wing
sections is taken into account only in terms of the "effective" angle of
attack and 1s assumed not to affect distributions of lift-curve slope
eand aerodynamic center. This procedure is equivalent to neglecting the
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influence of deformation on the lift-producing capecity of a given wing
section.

Flutter characteristics have been calculated by the method developed
herein (using three vibration modes) for wings with sweep angles from 00
to 52.5°, aspect ratios from 2.4 to 7.4, taper ratios of 0.6 and 1.0, and
center-of-gravity positions between 34 percent chord and 59 percent chord.
The results are compared herein with experimentel data obtained in the
Langley 26-inch transonic blowdown tunnel (refs. 28 to 31) and in the
Lengley 9- by l2-inch supersonic blowdown tunnel (ref. 32).

SYMBOLS
A aspect ratio of full wing including fuselage intercept
Ap : aspect ratio of wing considering side of fuselage as a reflec-

tion plane (twice the panel aspect ratio)

a nondimensional distence from midchord to elastic axis measured
perpendicular to elastic axis, positive rearward, fraction
of semichord b

ac nondimensional distance from leading edge to local serodynamic
center (for steady flow) measured streamwise, fraction of

stresmwise chord, Cma/sz

acn nondimensional distence from midchord to local aerodynamic
center (for steady flow) measured perpendicular to elastlc
sxls, positive rearward, fraction of semichord b

b semichord of wing measured perpendiculer to elastic exis

by gemichord of wing messured perpendiculer to elastic axls at
spanwise reference station 1 = 0.75

8 span of wing panel considering side of fuselsge es a reflec-
tion plane

B ratlo of local semlchord b to reference semichord b, meas-

ured perpendicular to elastic axis, b/byr

c complex circulation function, F + 1G

Cy local lift-curve slope for a streamwise sectlon in steady flow
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local lift-curve slope for a section perpendicular to the
elastic axis in steady flow _ =

derivative with respect to angle of attack of local pitching-
moment coefficient measured about the leading edge of a
streamwise section

local lifting-pressure coefficient

circulation function which modifies in-phase load components

deflection function of wing in bending mode
deflection function of wing in torsion mode

circulation function which introduces out-of-phase load
components

structural damping coefficient for wing (Subscript o denotes
torsionsl mode; subscript h denotes bending mode.)

local vertical translational displacement of wing at elastic
exis

mess moment of inertis of unit length of wing sbout elastic
axis . - . .

-1 | o "f_

reduced frequency based on the spanwlse reference station
(n 0.75) and on velocity component normal to elastic axis,

/v
length of exposed wing panel measured along elastic axis

Mach number

osclllatory moment about elastic axis per unit length of wing,
positive leasding edge up .

mass of wing per unit length measured slong elastic axis

osclllatory 1ift per unit length of wing along the elastic
axis, positive downward

downwash expression defined by equation (5b)
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rq nondimenslonal redius of gyration of wing about elastic axis,
/Ta/m2

t time

v flutter speed, measured parallel to free stream (experimental
values or values calculated by the method of this report)

Vg calculated reference flutter speed obtained by using Cla,n = 2%
and acp = - %

v free-stream veloclty

X streamwise coordinete measured from leading edge of wing root

x' nondimensional coordinate from midchord meassured perpendicular

to elastic exis, positive rearward, fraction of semichord b

Xq, nondimensional distance from elastic axis to local center of
gravity measured perpendicular to elastilc axis, positive
rearward, fraction of semichord b

y' distance along elastic axis measured from wing root, 17
o angle of attack

B VMZ-l for M>l;\,l-—M2 for M <1

K wing section mess-density ratio, wnpb2/m

A sweep angle; positive for sweepback

taper ratio of full wing including fuselage intercept

Ap taper ratlo of exposed wing panel

| nondimensional coordinate (either spanwise or along elastic
axls) meassured from wing root, fraction of exposed panel
span 8 or fraction of wing length 1

e locel torsional displacement of wing measured about elastic
axis

p alr density
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g locel bending slope of elastic axis, Oh/dy'
T local rate of chenge of twist, 36/dy'
w circular frequency of vibration
o, circular frequency of first uncoupled torsional vibration mode
of wing measured about elastic axis
Wy clrcular frequency of uncoupled bending vibration mode of wing
(subscripts 1 and 2 denote first and second bending modes)
3 nondimensional stresmwlse coordinate messured from leading edge
of wing root, frection of exposed panel span 8
Subscripts: -
c/h quantities agsociated with the wing quarter-chord
eg quantities asgssociated with the wing elastic exis
C circulation functions obtained from the oscillatory aerodynamic
coefficients glven in reference 27 for two-dimensional com-
pressible flow -
LE quantities assoclated with the wing leading é&ée N
M quentities associlated with the Mach lines originating from wing
root or tip
n quentities associated with wing sections normal to the elastic
axis
I circulation functions obtalned by Theodorsen in reference 33
for two-dimenslonal Incompressible flow
TE guantitles associated with the wing tralling edge

Dots over symbols denote derivaetives with respect to time.
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DESCRIPTION OF THE METHOD

General '

The procedure for flutter calculation used in this report is bas-
ically e Rayleigh, or modal-type, anelysls and 1s illustrated herein with
uncoupled vibration modes although coupled modes can be used. (The use
of uncoupled modes in flutter calculatlions 1s discussed in detall in
refs. 22 and 34.) The flutter modes of the wings studied in this inves-
tigation are represented by the first and second bending and the first
torsionel vibration modes of uniform cantilever beams. All deformations
are congidered to be made up of vertical bending of an approximately
straight elastic axls and rotation about that axls. The wing root is
treated as though 1t were clamped along a line normal to the elastic axis
and pessing through the Intersectlion of the elastic axis and the root
chord. The dynamicel equations involved in thils type of anelysis are
obtained from Legrange's equations of motion in which the vibration modes
are used as generelized coordinates. These dynamicel equations repre-
senting the balance between elastic, inertisl, and aerodynemic loads are
derived in appendix A and are obtained (for the simple case of one bending
mode and one torsion mode) in the form

{%2(1 * o) - l}n/;z %(b%)arhedy' B ['br _/;1 %G—r)Bmfhfe dar]ﬂ g biama L ' Prpay' =0 (1)

and

1 3 2 1. 2,4 1
1l{b 1 2|1% X b 2.1 - 1 LI
[-brj; ;(—,) xafito av]y [b, [—:2 (@ + 16s) l}fo i(r) fedv}.e = ), W w=0 (@

where h snd 6 are as defined in equations (A8) and (A9). These same
equations in a different form were used in reference 22. The values of
all geometricsal, structurasl, and serodynsmic quantities to be used in

these equations are those values assoclated with sections normal to the

elastic axis.

The immovations of the present method consist of alterations in the
expressions for section lift P, pitching moment My, and complex clrcu-
lation function C = F + iG 1in order to approximate the aerodynamic
effects of finite span, teper, end compressibility. The section 1ift P
and pitching moment Mgy are expressed in terms of erbltrary section 1ift-

curve slope and aerodynamic center which are asssumed to vary slong the
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span of the wing. For any particular velue of free-stream Mach number,
the spanwlse distributions of lift-curve slope and serodynamic center
are calculated from well-known steady-state aerodynamic theory for flat
rigid wings. The spanwise distributions of the 1lift and moment on the
deforming wing are then found by using the aforementlioned values of
static section lift -curve slope and aerodynemlc center in conjunction
with the "effective" angle-of-attack distribution resulting from oscil-
lation of the wing in each of the assumed vibration modes.l The values
of 11ft and moment thus obtained account approximately for finite span,
taper, compressibility, and deformetion shepe of the wing. However, it
is also necessary to take into account the effect of oscillatory motion
on the magnltudes and phase angles of the 1ift and moment vectors. In
the present method thils is done spproximately by utilizing circulatilon .
functions (analogous to the femiliar F and G functions of Theodorsen

(refs. 33 and 35)) which are modified on the basis of aerodynemic flutter
coefficients given by Jordsn (ref. 27) for two-dimensionsl airfoils oscil-

lating in subsonic or supersonic flow. In the application of the circu-
lation functions thus obtained, the Mach number normsl to the leading

edge 1s employed,

Formuleting the aerodynamic forces and moments in this manner implies

the following assumptions:

(l) The bending and twisting deformdtiBﬁ “of individual wing sections

18 accounted for in-terms of the "effective" angle of attack only. The

effect of relafive deformation on section lift-curve slope and aserodynamlc

center can be neglected. Camber deformation of sections normel to the
elastlc axis 1s notconsidered.

(2) The effect of oscillatory motion on the magnitude and phase
angles of the sectlon 1ift and moment vectors is the same for each wing
section and may be represented by modified circulation functions associ-
ated with the Mach number component normal to the leading edge.

In view of the use of statlc lift-curve slopes and aerodynamlc cen-
ters, application of this method at high velues of reduced frequency
would be open to question. At low to moderate reduced frequenciles, how-
ever, the spproximetlion should be reasonable.

In the remaining sections of this description of ﬁhe method are
discussed the alteration of section 1ift P and pitching moment Mg

by the introduction. of static three-dimensional section lift-curve slopes

IThe "effective" angle of attack 1s the downwesh resulting from the
motion divided by the component of free-stream velocity normal to the
elastic axis.
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and aerodynemic centers, the calculation of these statlic aerodynamic
parameters, and the evaluation of the complex circulation funetion C
by utilizing two-dimensional subsonic or supersonic oscillsting-airfoil
theory.

A detalled description of the flutter calculation procedure is given
in eppendix B, end expressions for the elements of the final flutter
determinant are given in appendix A.

Expressions for Section Lift and Pitching Moment

In formulating the expressions for section 1ift and pitching moment
the following basic assumption i1s made: The flow over wing sections nor-
mal to the elastic axis conslsts of a quasl-two-dimensional noncirculatory
flow plus a circulatory flow In which the circulation 1s fixed by the
component of free-stream velocity normal to the elastic axis in conjunc-
tion with downwash distributlions elong chord lines normal to the elastic
axis (rather then by the free-stream velocity and downwash distributions
along streamwise chord lines). In contrast to the method of reference 22
the present method does not consider the circulatory flow to be two-
dimensional and incompresslble in nature. It should be observed that the
concepts of circulatory and noncirculatory flow components as developed
in references 22 and 33 gppear to have 1little meaning for wings with
supersonic edges. Nevertheless, for convenience, these concepts have
been utilized in the present method for wings with supersonic edges since
it is believed that inclusion of the appropriate section lift-curve slopes
and aerodynamic centers represents the principal serodynamic effects on
the calculeated flutter speed of wings with supersonic edges.

The section 1ift P end pitching moment My which are used in the
present analysis may be obtained from similar expressions in reference 22
by introducing variable section lift-curve slope sz n and variable

2

aerodynamic center acp. The procedure for meking this generallzation
is as follows:

First, the expressions for P and My used In reference 22 are
written in the form

P = -ﬂpba[? + Vp + Vpo tan Agg - ba(§ + VpT tan Aea)] - } Noneirculastory

2xpvpbCR } Circulatory (3)
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and

My = -npbl*(% + 32> <'9' + VpT ten Aea> + ﬂpvnbz(ﬁ + Voo tan Aea) +
> Noncirculatory

prBa(i:t + V6 tan Aea) + :tpvnabz(e - &bt tan Aea.) -
211 1
2xpvyb [—2- (a + 2>C]Q

where Q 1s the downwash expression defined by equation (5a). These
equations are, of course, based on the assumption that flow with small
disturbances exists. '

P,
1 Circulatory (%)

J

Circulatory components.- Only the circulatory components of these
expressions are changed. 1In the circulstory components of equations (3)
and (4) the value 2x for section lift-curve slope is replaced by the
variable Clm 0’ and the quarter-chord agro@ynamic-cenﬁer position

s -

Qacn = - %) is replaced by the varlable acp. The downwash expression @

must also be altered to include the effects of varlable section lift-curve
slope sz,n and serodynamic center acp.

The treatments of the circulatory components of 1lift and pitching
moment in references 22 and 33 are based on classlcal two-dimensional
Incompressible thin-airfoil theory, which Indicates a section lift-curve
slope of 2r and an aerodynamic center located at the quarter-chord posi-
tion. The circulation strength is therefore related to the downwash veloc-
ity at the three-querter-chord position. This downwash as given In ref-
erence 22 is

Q= h+ Vpd + V0 tan Aeg + b<% - )(é + VT tan Aea) (58)

and the distance between the bound vortex (quarter-chord) and the point
at which the downwash boundary conditlon is applied (three-quarter-chord)
Cla,n
b. (See ref. 24

is b. For arbltrary Ci3, ,, this distance becomes
b4

for a detalled discussion of the eapplication of the dowﬁwash boundary con-
dition when O3, , 1s other than 2x.) Then, if acp (location of bound
)
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vortex) is also arbitrary, the downwash condition is spplied at the posi-

1
tion b{—=2E 4 acn| measured positive rearward from the midchord. (See

fig. 1.) Then, in the expression for @, the distance from the elastic
axls to the point of application of the downwash condition b~% - a| is

Cq
replaced in the present analysis by b( 2:,n + acp - a). Then for the

present method,

c
] z .
Q=h+ vp® + Vo tan Aeg + b 2:,n + acp - & (e + vpT tan Aea) (5b)

Noncirculatory components.- The noncirculatory flow components con-
tribute to the 1lift and moment only a virtusl mess effect which 1s com-
peratively very small except at high frequencies. Since, as mentioned
previously, the present method should probaebly be applied only to cases
involving low to moderste reduced frequenciles, 1t gppears thet the non-
circulatory flow terms wlll constltute only a small fraction of the over-
ell section 1lilft and moment. Now, the noncirculatory components of sec-
tion 1ift P and moment M, which are used in references 22 and 33 and

shown in equations (3) and (4) of the present report are derived from
the veloclity potentials for unsteady two-dimensional incompressible flow
about a flat plate. The virtual masss effects resulting from these non-
clreculatory flows ere dependent only upon the velocity perpendicular to
the wing surface and do not depend on the stream velccity as such. TFor
low to moderate frequencies, the veloclty perpendicular to the wing sur-
face will be small compared to free-stream velocity. Therefore, for wings
with all edges subsonic, any effects of compressibility on the magnitudes
of the noncirculatory flow terms should be small, and the consequent
effects on the section lift end moment should be of second order. It is
concluded that, for wings with all edges subsonic, use of the noncircu-
letory components of 1lift and moment In essentially the two-dimensionsal
incompressible form should result in negligible error in the calculeted
flutter speed.

In view of the relatively small magnitude of the noncirculatory flow
components, the two-dimensional incompressiblie form is also used as s
first approximation to virtual mass effects for wings wlth supersonic
edges as well as for wings with all edges subeonic. At low reduced fre-
quencies, the noncirculstory terms might even be completely neglected
without introducing msjor errors into the calculated flutter results.
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The section lift and pitching moment used throughout the present
investigation are made up of circulstory components generalized as pre-
viously described and noncirculatory components used in the unaltered
two-dimensional incompressible forms shown in equations (3) and (k).
The resulting expressions are for the section 1ift )

P= -ﬂpbe[.ﬁ + vy + V8 tan Agg - ba.('B. + V,T tan Aea.)] - }Noncircuh‘tory
C1, nPVabCR ' } Circulatory (6)

and for the pitching moment about the elastic axis

My = -prl“(% + a2>(§ + VpT ten Aea) + pravn(l:x + Vo ten Aea) +
Noncirculatory

:tpbja(ﬁ + Vud ten Aea.) + pravnz (a - &bT tan Aea.) -

C
1
atpvnba[% - (a - acn)c —E:%Q Circulatory (7

where the downwash expression Q is that deéfined in equation (5b).

Note that in accordance with the discussion in reference 22 the terms of
equations (3), (%), (6), and (7) essociated with the variation of the
velocity potential with lengthwise distance-y' are omitted.

Substituting expressions (6) and (7) into the dynamical equations (1)
and (2) and using equation (5b), together with the assumption of hermonic
motion, yleld two homogeneous flutter equations in the two unknowns h.
and 8. The flutter determinant resulting from these flutter equations,
expressions for the elements of the determinent, and the method used in
solving the determinant for the flutter condition are given in sppendix A.
The remsinder of the description of the method is concerned with the evalu-
ation of the static aerodynamic parameters Cza,n and ac, end the cir-

culation functions F and G which appear in the expressions for the
determlnent elements.
Static Aerodynamic Parameters

All calculations of static aserodynamic perameters are made by con-
sldering the wing to be rigid and flet. _ : =
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For M = 0 (reference).- The reference flutter speed VR 1is found

for each wing by using C; = 2¢ end acp = —-% at M= 0. With
b

these values the flutter equations (A12) and (A13) reduce to those given
in reference 22.

For 0 £M < 1.- At subsonic (and incompressible) speeds the span-
wise distribution of C3, i1s found by the lifting-line method of ref-

erence 24. TIn reference 24 charts of the necessary influence coefficients,
which facilitate rapid calculetion of the loading, are presented. Although
this method involves the application of boundary conditions and the eval-
ugtion of load Intensity at only seven spanwise stations, the resulting
accuracy is considered adequate for present purposes, and the method is
used because of its simplicity. Simple sweep theory is used to relate

Cs
Cy. to Cg . Thus, C = ———45——. For all subsonic speeds the
[¢ ) CI,,II. a”n cos Aea
serodynamic center is taken at the quarter-chord position (%cn = - %).

However, at subsonic speeds higher then those calculated herein it may
become necessary to teke aerodynamic-center changes into account. Details
of the loading calculatlons are given in appendix B.

For M > 1l.- At supersonlc speeds when the wing leading edge is
swept behind the leading-edge root Mach line (subsonic leading edge), the
equations of reference 25 are used to calculate the statle dilstributions
of sz,n and &acn. The method of reference 25 1s based on & superposi-

tion of conical flows, and relatively simple formulas are given for cal-
culating the loading. When the leading edge lies shead of the leading-
edge root Mach line (supersonic leading edge), the equations of
reference 26 are used. Reference 26 is also based on conicel-flow
concepts. These equations for lifting pressure have been used in
integrals which yileld section-lift and pltching-moment coefficlents Cza

and Cmg (end hence &ac). The resulting expressions and details of
thelr aspplication are glven 1n appendix B. The equetions for CzOL and
Cmy, &1ven in eppendix B make 1t unnecessary to refer to references 25
and 26 for present purposes.
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Circulation Functlons

The complex circulation function
C = C(M,knr) = F(M,knr) + 1G(M,knr)

appearing in equations (6) and (7) and in the expressions of appendix A,
modifies the otherwise-static circulatory components of 1ift and pitching
moment to sccount for the effect of oscillation. The F functlon modi-
fies the load component which 1s in phase with angle of ettack, and the

G function introduces out-of-phase load components. Values of the F
and G functions used in reference 22 were those developed by Theodorsen
(ref. 33) for two-dimensionsl incompressible flow about an oscillating
airfoil. In the present investigation these values are egain used for

M = 0, but the functions must be modified to account for compressibility
effects at M > 0. The modification used herein is based on loading
funections for two-dlmensional subsonlc or supersonic flow about an oscil-
lating airfoll es given by Jordan in reference 27. The relations between
these loading functions and the F and G circulation functions are
derlved in appendix B. Although the flutter calculation is based on a
consideration of sections normal to the elastic axis, the governing Mach
number for the determinatlon of the circulation functions is taken to be
that normal to the leading edge. This cholice of governing Mach number
arises from the fact that the nature of the flow over a sectlon of wing
is influenced by whether the leading edge 1s subsonic or supersonic.

Although i1t would seem straightforward to use the sppropriate Fg
and Gg functions directly in the flutter calculations, this procedure

glves poor resulis in comparison with experiment. (See figs. 3 and 9,
G,
for example.) The lesrge phase angles tan-1 fg of the complex circula-

tion functions assoclated with two-dimensionel compressible flow were

found to be Inasppropriate for three-dimensional wings. It was antici-
pated that if phase angles remsined moderately small (i.e., if G remained
fairly small relative to F)l, the calculated flutter speed would be rel-
atively insensitive to changes in the megnitude of G. Thet is, 1f G

1s not large relative to F, the actual value of G i1s unimportant. The

lne assumption of small phase angles implies an upper bound on the
values of reduced frequency Xkny for which the present method can be
used. However, as previously mentioned the use of statlcally based load
distributions also restricts the method to moderately smell frequency
velues, so the present assumption imposes no further limitation.
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predominant effect on the loading of changing Mach number would then lie
in changing the magnitude of the in-phase component associated with F.
The form of the complex function C which 1s used in the present calcu-
letions 1s therefore teken to be

=c( ,knr)=F+1G=§-§-(FI+iGI)

This function contains an in-phase component which is the same as that
derived from reference 27 for two-dimensional compressible flow, but the
associated phase angle 1s independent of Mach number. Hence, the phase
engle is the seme as that given by Theodorsen in reference 33.

In order to investigate the valldity of this reasoning some calcu-
lations were also made by using

c= c(MIE,km) = Fo + 10

Also, to investigate the sensitivity of the flutter calculatlions to dif-
ferent forms of circulation-function representation, some calculetions
at the higher Mach numbers were made by using

F + G
\’FI + GI

This function has zero phase angle, and its amplitude 1s the ratio of
the maegnitudes of the resultant vectors for compressible and incompres-

sible flow.

Further details of the circulation-function caelculation are gilven
In sppendix B. The method for solving the final flutter determinant is
glven in appendix A.
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RESULTS AND DISCUSSION

Presentatlion of Results

Flutter characteristics have been calculated by the present method
(using three vibration modes) for wings with sweep angles from 0° to
52.5°, aspect ratios from 2.4 to 7.4, taper retios of 0.6 and 1.0, and
center-of-gravity positions between 34 percent chord and 59 percent chord.
The plan forms of these wings are shown in figure 2. The calculated
results are compared with experimental data obtalned 1n the Langley
26-inch transonic blowdown tunnel (refs. 28 to 31) and in the Langley
9- by 1l2-inch supersonic blowdown tunnel (ref. 32).

Unless otherwise Indicated the subsequent discussion deals entirely
with calculsted results obtained by using the complex circulation function

Fg

C= fE(FI + iGI)

Wing designstion.- The three-dlglt system used to identify the wings
with teper ratio of 0.6 is the same as that used in reference 30. The
first digit in this system is the espect ratio of the full wing to the
nearest integer. The second and third digits give the gquarter-chord
sweep angle to the nearest degree. For example, wing 445 has an aspect
ratio of 4, a sweep angle of 45°, and & full-wing taper ratio of 0.6.
Since some of the wings dlscussed in this paper have identilcal plan forms
but different center-of-gravity positions (ref. 31), a single letter ie
appended to the plen-form designation to signify a shifted center of
gravity. For exemple, wing 445 has a center. of gravity at approximately
46 percent chord, whereas the center of gravity of wing 445F 1s at about
34 percent chord, and that of wing 445R 1s at about 58 percent chord.
Wing 400 has & center of gravity at epproximately 45 percent chord, but
wing 4OOR has a center of gravity at about 59 percent chord.

For the wings with taper ratio of 1.0, the same system is used,
except that a fourth digit 1 1s added to distingulsh the taper ratio.
For example, wing 4451 has a full-wing aspect ratlio of 4, a sweep angle
of 45°, and a taper ratio of 1.0.

Flutter characteristics.- Calculated flutter characteristics V/Vg,
/oy, end kp, and the associated velues of VR, M, uy, and p are

given in table I for several wings (see fig. 2) at several Mach numbers.
The calculated values of V/VR and uyhu, are compared with experimental
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dete in figures 3 to 1k and 15 to 26, respectively. The experimental
flutter points shown were obtained at various values of density p;
whereas, for a particular wing, ail of the points calculated by the pres-
ent method were obtained at a constant velue of p which represented
approximately an aversge of the experimentel densities. For each experi-
mental point, however, the normalizing VR was calculated by using the

sppropriste experimental density. On the basis of previous experlence,
it is believed that normelizing the experimental flutter speeds in this
manner essentially accounts for density effects so that the resulting

(V/V'R)exP is considered to be nearly independent of p, at least over

the range of density varietlon which occurs hereln.

The static distributions of Cla,n and acy used in obtaining the

calculated flutter characteristics are shown In figures 27 to 35. For

all of the flutter calculations presented in this report, the flutter
modes of the wings were represented by a comblnation of the first torsion
mode shape and first and second bending mode shapes of & uniform cantilever
beam.

The reference flutter speeds Vg used in references 28, 30, and 32

for wings 430, 245, 40O, L40Ol, and TOOl were calculated by employing
only two degrees of freedom (first bending snd first torsion). Since
three-degree-of-freedom calculations yileld values of VR which are

slightly lower than the two-degree-of-freedom values, the experimental
V/VR values for these wings have been multiplied by the ratio

VR for two degrees of freedom
Vg for three degrees of freedom
flutter-speed ratios as presented herein asre normalized by VR for three

so that both calculated and experimental

degrees of freedom.

Flutter Speeds

As shown in figures 3 to 14, the flutter speeds calculated by the
present method for all wings demonstrate a characteristic decrease as
Mach number increases from O to near 1.0. This decrease is the result
of increasing Ci, which 1is caused by compressibility at high subsonlc

speeds. It should be noted that at M = O +the differences between the
V/VR values shown end the value 1.0 result solely from the effect of

finite aspect ratio. As Mach number increases above 1.0, decreasing
sz and rearward shifting ac cause a repid rise in the flutter speed.

In the immediste vicinity of M = 1.0 the flutter-speed curves are shown
dashed to indicate that this region is inaccessible to the present
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calculations. This inaccessibility results from the breakdown of both
subsonic and supersonic three-dimensional steady-flow wing theorles near ”
M = 1.0. It should be noted that the minimum value of V/VR will gen-

erally occur within this inaccessible region, and, hence, %L can-
R/min

not usually be calculated by use of theoretical static aerodynamic coef-

ficients obtained from the wing theories employed herein. It is possible, -
however, to fair a reasonable curve through the neighborhood of M = 1.0
by meking use of the adjacent subsonic and supersonic calculated points.
The extent shown for the deshed portion of the curves should not, of —
course, be interpreted as representing the limits of the Inaccessible
reglon. No sttempt has been made to evaluate these limits, and the range
shown in the figures is only illustrative.

For all of the swept wings the calculated flutter-speed curves of
figures 3 to 1l are in very good agreement with the experimental data at
all Mach numbers. In general, the calculated curves actually lie within
the scatter of the experimentsl deta. For wing 445 (fig. 3) there are
no experimental data in the range 1.4 <M < 1.75. However, the leveling-
off tendency demonstrated by the calculated flutter-speed curve in this
Mach number range is in qualitative agreement with data for other similar -

wings. - - ~

Comparison of the flutter-speed curves for wings 4L5, L4SF, and L45SR

(figs. 3, 4, and 5) shows that the rather large differences between the 3
center-of-gravity positions for these wings cause only very slight dif- -
ferences in V/VR at subsonic speeds. At supersonic Mach numbers, how-
ever, the data show that the characteristic rise of flutter speed with
increasing Mach number becomes more repid as the center of gravity is
moved progressively forward. This behavior is also predicted by the
calculeted curves. -

The close agreement between calculated and experimental flutter
speeds for wing 245 (fig. 6) is rather surprising in view of the smell
aspect ratio of this wing. In general, the use of a strip-theory type
of analysis and uncoupled vibration modes for a wing of such small aspect
ratio (panel aspect ratio = 0.91) would be open to question. The agree-
ment in the present case may, therefore, be fortultous.

For most of the wings shown in thils report no tip correction was
applied to acy to account for the:forward shift of aerodynemic center

within the tip Mach cone. (See discussion of tip corrections in appen-
dix B.) For wing 430, howevei, the tip Mech cone covered so large a

portion of the wing that 1t was considered necessary to epply & tip cor-
rection to acp. (See figs. 28(d) and (e).) At M = 1.15470, this cor-
rection appears to be rather lerge. However, a preliminary calculation
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at this Mach number without the correction to acp yielded a value of
flutter speed only 13 percent higher than that shown. It appears, there-
fore, that unless the tlp Mach cone covers a laerge portion of the wing,
the application of a tip correction to ac, 1s not necessary.

For the low-aspect-ratio unswept wings (figs. 10, 11, and 13) agree-
ment between calculated and experimental flutter speeds 1s not as good
as for the swept wings. For wing 400 (fig. 10) the agreement is fair up
to ebout M = 1.0, but the calculated values overpredict the flutter

speed by as much as 2% times at M = VE: The magnitude of this error is

believed to be related to the proximity of the local serodynamic centers
to the local centers of gravity and the fact that linesr theory predicts
an aerodynamic center thet is too far rearward. This hypothesis is sup-
ported by the results obtained for wing 400 with its center of gravity
gshifted from about 45 percent chord to about 59 percent chord (wing LOOR).
Figure 11 shows that for wing LOOR at supersonic speeds the calculated
curve overpredlcts the mean experimental values by only about 13 percent.
The erroneous results obtained for wing LOO should probably not be inter-
preted as Indiceting a limitation on the present method of flutter calcu-
letlon. Rather, these errors appear to arise from the well-known limita-
tions on the use of linesrized flow theory to calculate load distributions
on wings of finite thickness. Wing 400 at supersonic speeds seems to con-
stitute a very sensitive case in which a small inaccuracy in the location
of the aerodynamic center leads to large errors in calculated flutter
speed. In the case of wing 4001 (f£ig. 13) the calculated and experimental
values ere in very good sgreement up to sbout M = 1.0. At supersonic
speeds, where the local aerodynemlc centers are shifted rearward toward
the local centers of gravity, the theory again overpredicts the experi-
mental values, this time by up to 37 percent. This deviation is not
surprising in view of the fact that wing 40Ol is not greatly different
from wing 400.

The calculated flutter speeds for the high-aspect-ratio unswept wing
(wing 7001, fig. 14) are in good agreement with experiment throughout the
Mach number range. The lmproved agreement for this wing as compared with
that for the low-aspect-ratio unswept wings may be caused to some extent
by the decreased thlckness of wing TOOl near the tip. Wing TO01l was
tapered in thickness from 4 percent at the root to 2 percent at the tip,
whereas wings 400, 4OOR, and LOOLl were of constant 4-percent thickness.

The flutter-speed curves shown in figures 3 to 1k were calculated
by using the complex circulation function

¥
F1
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as described previously. The few points obtained by Using the function

C = Fo + 10

différ from the curves by no more than 7 percent.- This close agreement
supports the previously stated contention that if phase angles (tan-1 %
are moderstely small,l the calculated flutter speed will be relatively

insensitive to changes in G. Figures 3 to 14 also show that Plutter
speeds at the higher Mach numbers calculated by using the function

2 2
C = u(l + 10)

differ from the curves by no more than 10 or 11 percent. Although, as
expected, the points calculeted in this manner do not agree with experi-

F
ment as well as the curves | obtained with C = §g<FI + iGI)), the small
I .

differences between them do point out the relative insensitivity of the
calculated flutter speed to the form of circulation—function representa-
tion used.

In making the flutter calculations presented herein it was observed
theat for all but the highest subsonic speeds the circulaetion functions Fo
and Gg are not greatly different from the functions Fy and Gy of

Theodorsen. At M = 0.75 for the wings shown in figure 2, the use of

F
C = FI + 1Gy iInstead of C = EQCFI + iGI) chenges the flutter speed by
I

only asbout U4 percent or less. It would seem, therefore, that the modified

circulation functions need be employed only at high subsonic and super— )

sonic speeds.

17t should be clearly understood thet the quantity ten~% % is the

phase angle of the complex circulation function C = F + 1G and should
not be confused with any phase engles assoclated with the wing
displacements.
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Flutter Frequenciles

F
The calculated curves (%ith C= EQGFI + 1G1)> of flutter frequency
I

(figs. 15 to 26) indicate that for all of the swept wings the frequency

is well predicted at subsonilc speeds. At supersonic speeds the usual

rise in frequency is predicted by the theory, but 1t occurs at Mach num-
bers higher than those indicated by the test results. In genersl, the
agreement between celculated and experimental flutter frequencies i1s not

as good as the agreement between calculated and experimental flutter speeds.
The frequencies calculated for the swept wings by using

\Fe” + 667

C= 1+ 10)
2 4 6.2
Fi-+ 6

are all excessively high, except at Mach numbers where the leading edge
is supersonic or nearly so. At these higher Mech numbers the frequencies
thus obtalned are generally In better agreement with the experimentel

F
vaelues than are the wvalues obtalined with C = EQ(FI + iGI).
I

For unswept wing 4001 (fig. 25), the number of calculated points is
not sufficlent to indicate whether the pronounced dip in frequency, which
occurs at high subsonic Mach numbers, is predicted by the theory. At low

F
supersonlic speeds the calculated curves |(with C = EEQFI + iGI) over-
I
predict flutter frequencies by a substantial amount. However, the dif-
ferences between theory and experiment become much smaller at the higher
supersonic speeds, except in the case of wing 400 (fig. 22). The fre-
quencies as well as the flutter speeds of wing 400 are overpredicted by

a factor of nearly 2%. As in the case of the swept wings the frequencies
for the unswept wings obtained by using

\/Fe? + &c?
C = ___EL____EL(l + 10)

2 2
FI + GI

are all excessively high.
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Limitations of the Method

Although the limitations of this method have not-been fully evalu-
ated, some of the more importent restrictions may be qualitatively
discussed.

Frequency range.- As stated previously, the use of spanwise load
distributions based on lift-curve slopes and aerodynamic centers calcu-
lated from steady-flow wing theory imposes an upper bound on reduced-
frequency values for which the method can reasonably be used. No attempt
hae been made to determine the upper limits of reduced frequency for which
the method is usable, but good results for values of knpyr up to 0.2 are

shown herein.

Mach number range.- The nature of the equations for the circulation
functions (egs. (B38) and (B39) or (BLO) and (B41)) shows that at Mrm = 1,
the circulatlon functions become Fo = Gg = 0. This implies that a small
range of Mach number in the lmmedilate vicinity of Mig = 1 418 inaccessible

to the present method. This is not a serious limitation, however, because
a curve of flutter speed or frequency cen be reasonably faired through
thls inaccessible region by meking use of adjacent points. For the wings
calculated in this report, there appear to be no sudden or extreme fluc-
tuations of flutter speed or frequency in this region.

The limitations on Mach number range appertaining to the particuler
steady-flow wing theories used are, of course, carried over to the flutter
calculation. In general, this carried-over restriction will exclude free-
stream Mach numbers 1n the immediate vicinity of 1.0, as was mentioned

previously.

Flutter modes.- The use of uncoupled modes in combinstion with a
strip theory involving strips normal to the elastic axis is not an
essentlal requirement of the present method of flutter calculstion. An
analogous .calculation procedure would result from the use of coupled
modes together with streamwise strips. Flutter modes which involve
significant amounts of camber deformation obviously cannot be treated by
the method in its present form. As mentioned previously, all flutter
calculations presented herein were mede by using the mode shapes of a
uniform cantilever beam. Since the results of the flutter analysis are
not very sensitive to slight changes in mode shape, such a procedure is
reasonable as long as aspect ratio and especially taper ratio are not

too small.

Plan-form range.- The strip-theory concepts which are employed in
the present method also impose plan-form limitations. _When agpect ratio
or taper ratio or both become so small that the variables (notably herein,
aerodynamic loading and circulastion functions) associated with a given
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section of the wing cannot be treated by strip theory, then the present
method 1s no longer usable.

Center-of-gravity position.- Although the influence of different
center-of-gravity positions was Ilnvestigated for only two plan forms
(wings 445 and L400), it appears that, in cases for which the local centers
of gravity are located close to the local aerodynamic centers, linearized
flow theory should be employed only with great caution. This limitation
is not pecullar to the present method. It would apply to any flutter cal-
culation for which the aerodynamic loadings are obtalned from linear
theory.

At subsonic speeds, neither the swept nor the unswept wings demon-
strate any apprecilable sensitivity of V/VR to center-of-gravity posi-
tion. This result would be expected since at subsonic speeds local aero-
dynamic centers are at or near the quarter-chord position and are not in
proximity to the local centers of gravity.

CONCLUDING REMARKS

A method has been developed for calculeting flutter characteristics
of finite-span swept or unswept wings at subsonic and supersonic speeds.
The method is basically a Raylelgh type analysis and 1s illustrated herein
with uncoupled vibration modes although coupled modes can be used. The
aerodynamic loadings are based on distributions of section lift-curve
slope and local serodynamic centers calculated from three-dimensional
steady—flow theory These distributions are used in conjunction with
the "effective" angle-of-attack distribution resulting from each of the
assumed vibration modes in order to obtain values of section 1ift and
pitching moment. Circulation functions modified on the basis of loadings
for two-dimensionsl airfoils osclllating in a compressible flow are
employed to account for the effects of oseillatory motion on the magni-
tudes and phase angles of the l1ift and moment vectors.

Calculstion of subsonic and supersonic flutter characteristics for
12 wings of varying sweep angle, aspect ratio, taper ratio, and center-
of-gravity position and comparison of the results with experimental
flutter data indicate that the present method gives generally good flutter
results for a wide variety of wings. The method is, however, subject to
the following limitations:

(1) It is probably not applicable at high values of reduced frequency,
although good. results are shown for values of reduced frequency up to
about 0.2.
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(2) It cannot be used at free-streasm Mach numbers in the immediate
vicinity of-1.0 nor in the immediste vicinity where the Mach number com-
ponent normsl to the leading edge is 1.0. However, flutter speeds and
frequencies may be interpolsted through these regions. i )

(3) The use of a strip-theory approach and the absence of camber
flexibility preclude treatment-of wings with low aspect ratio and low
taper retio (e.g., delta wings). Good results have been obtained, how-
ever, for a 45° swept wing with a panel aspect ratio of 0.91. o

(4) Caution must be used when applying the method to wings for which
the local aerodynamic centers are close to the locel centers of gravity.

Langley Aeronauticel Leboratory,
National Advisory Committee for Aeronsutics,
Langley Field, Va., November 26, 1957.
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APPENDIX A

DERIVATION OF THE FLUTTER EQUATIONS AND FLUTTER DETERMINANT

Flutter Equatlons

Basic assumptions.- The dynamicel equations used in the present
method are essentially the same as those derived in reference 22, except
for changes in the expressions for 1lift P, pitching-moment M, and

circulation funetions F and G. The general assumptions appertalning
to0 the method of reference 22 thus apply herein also. Briefly, the
assumptions mede with regard to the equations of motion are as follows:

(1) The elastic axls of the wing is approximately straight and
the oscillatory motion mey be represented by a comblnation of the
uncoupled bending and twisting vibration modes of the wing with respect
to this elastic axis.

(2) The wing root 1s treated as though it were clemped along =
line normel to the elastic axis and pessing through the intersection
of the elastic axis and the root chord.

(3) The analysis is based on geometric, structurel, and serodynamic
quantities assoclated with sections normsl to the elastic axis. These
assumptions are discussed in detail in reference 22.

Application of Lagrange's equations.- The dynemical equations
result from the application of Lagrange's equations of motlon to the
flutter problem. For simplicity, the flutter equations are derived
herein for the case of one bending mode and one torsion mode.
Generalization to an arbitrary number of modes is easlly accomplished
in the flutter determinant as will be illustrated. (The notation of
of ref. 22 has been followed where possible.) In the present method
the eppropriate expressions for kinetic energy

r-12 [ a £, (r') | ey + & 82 Z T2 ")| ey’ +
2% Jo 2= Jo

B8 j;l mx b (2, (v [£o ()] @y (a1)
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potential energy
1 L L. 242 : 2
U= g%%iaﬁ m:f'hzdy' + E(Da' 9_ L Ia,fe dy' (A2)

and virtual work

8W = Q,8h + Qg8 (A3)

are the same as those of reference 22. The generalized forces are left
in the form

e [ (p-me 2 ni)ne (a)
and
Qg = fo Z(Mm - Tom? & 78 Yeqa” (8)

Substituting these expressions into Lagrange's equations

d [oT oT , U _ i - y

—;)5:3:“1 (86)
and

afor\ _am, u_

and assuming harmoniec oscillations

b= [2,0")]k = [Eal )] B - (8)
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and
0 = [£o(y)] 8 = [£g(r)] o etet (49)

lead to the equations of flutter

2 . 1 1 )
oy /b€, 2,0, b\ ' 1 .
(e g | [ oo gl [ e o

and-

['b‘”foz %(%)3"“’hr°°’jh * "ra[:%a(l + i) - ]foz r—‘.’g‘f(%)hffﬂv 8- m}ma fol Mty =0 (AID)

In the calculations of the present report, uncoupled beem bending and
torsional mode shepes h; and ad are used for the flutter deflection

functlons fh and fe. The introductlion of uncoupled modes into the
flutter equations is discussed in detail in references 22 and 3k.

Expresslons for the elements of the flutter determinant resulting
from equations of the type (Al0) and (All) are given in the following
section both for the case of an arbltrary number of vibration modes
and for the case of one torsion and two bending vibration modes as used
in the present analysis.

The Flutter Determinsant

Inserting equations (6) and (7) into equations (A10) and (Al1)
and using equations (A8), (A9), and (5b) yleld two homogeneous equa-
tions in the two unknowns h and 6, vwhich may be written in the

form

Ah + Bg = 0
(A12)
Dh + E8 = O
and for a nontriviel solution to exist,
A B
=0 (413)
DE
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Now if u bending modes and Vv ‘torslon modes are employed, the
elements of the flutter determinant (Al3) will become matrices Ai,j’

Bi:]’ Di,j’ and Eij’ such that
A1y By
o (A1h)

Di,j E:LJ

The solution of equation (Al4k) gives the conditions of flutter
(flutter speed and frequency). The procedure for solving this determi-
nant i1s glven at the end of this appendix. Expressions for typical _

elements in the matrices Ai.j’ Bi,j » Did s and Eij are as follows:

“n,\2 ti2 02 e 2
Ai:L:R'TnL (1+1ghi)-1zfo E-Bhidn-lj; B“hy“dn +

b, tan 1 d
r %80 fea C f ¢, Bt nydn +
o ‘a,n

1
1 ¢ j‘ 2
1 == c an +
*Er Jo oy b T x 2 an
1 an - .
by ten Aeaf B® -d—i- hidT] (1=1,23 ...u
Knr 0 N L
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1 1
= *o >

2
i T —f CZ B a - acn)hjccidn -

b..2tan 1 dh
L fea _cC f Cz Ba(a - a.cn) - oy dn

2

b,."tan dh

1 _ﬂf 3& __'j. q,idn i
knr 0 dn

1, 2, 3,
1, 2, 3

1,2, 3, . ..
1, 2, 3, « . .

29
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e

________Efo B<—+a2)-dn—ia,id.n E=1,2,3...v)

1 1

2 2 L/ 2
—_— c B®(a - ac_)o,a,dn - D lf B(—+a>a.a.dn-
kmﬁ./:; to,n ( n) %4 h) r"Jo 8 1%

1 1
3 “a,n
L sz,nB‘C:———l—aﬁ +eey - a) (a_ - ac_:n> aiajdn +

(equation continued on page 31)
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2; Al
b1 1
1 _/:) B3<i2%£ + ae, - a.)cr,ia.adn -

knr
broten fes f t 3 la,n i
—l - - —_—
~ knr2 5 ch«.,nB s + acp - & (a acn) i a,dn +
b 3‘l:a.n 1 Cy do
22 e [ 35<_§g£ + acn) 2 g an +
Kpm 0
b, Jtan 1 da
13———j§°ﬁf B)'"(-]—'+ag)g-id.idn 1 =1, 2, %, ...
Kpy 0 8 1 ,j=l,2,¥3,...v
1#3

In the special case of three degrees of freedom (first and second
bending and first torsion modes) used throughout the present investiga-
tion, the flutter determinant (eq. (Alk)) becomes

Agy Lpp By | =0 (A15)
Dy Dy, Fpg

The elements of this determinant cen be conveniently expressed ln the
forms

G F &y F G

F F G
Ap = (bl+b27-ki—r+b3knr2)+1(;2r-b2k;:+b3gé)
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4, = Pr ten Ay (D)
ee=;—1@/

oy = e 1 &
fa*fr—rl iz

2, = oet @ - o2, &
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b2
g5 = o .:n Rea g, = -brztan Neq @
- bnl
By = o @ o2 & by = 2L @
by = = t:n ~ea b, = ~b, tan Agg
-1 2 )
m]_=;-¢_p'® -brz’ @ m2= x @
- 3
m5 = b:; : @ - ic t:n feea @ mh = br27. @ +br3'ban Aea @

)
m5—brtanAea @

1 ﬂrpbr2 L,

®

Ry = 3t @

R2=

2
-1 2
xpby2 @) @5

and the clrcled numbers represent the following integrals:

®

1
2
= mh, dny
\[‘O l

1
B2h., 2dn
o M

®

1 2
®- [ o mPa
0 a,n
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1 1 2
@ = f Bl*<£ + a2>a,2dn @ = f c, BB<C——J—°" 2
0 8 0 e,n 2xn
2
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a.cn> an 1

These integrals are easlly evalusted numerically. Only about one-half
of these integrals contain sz n or ac,. Hence, only these integrals
J

change with Mach number. For a given wing the remaining integrals may
be evaluted once for all. Note that the integrals are independent of
density p. The density esppears only as a multiplying factor in 81>

e £ g,h,ml,R,Rz,andRB.

¢ 3
1 1 1 1

1’ "1’

Solution of the Determinant

For a glven wing at a given Mach number the three-by-three flutter
determinant (eq. (Al5)) was solved for 2 on an electronic digitel
computer for varlous values of the paremeter knr (and asso%iated values

of F and G). This evaluation of Z yielded values of and g

Vn

corresponding to the various knr values. A plot of g against b———
%o
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then gave the value of k., and 0 for which g = 0.

and

define a flutter point.

brdy,
bytd
T
Yn _ _Vn
bpdy, by,

Then the flutter speed V is

Ve Py, _
br“h, cos Aea

and the flutter frequency o is

w = X By
" T gy
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These values
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APPENDIX B
PROCEDURE FOR MAKING FLUTTER CATLCULATIONS

The following procedure was used in meking the calculatlons presented
herein.

Sumary of Required Information

First, a summery sheet 1s set up similar to that shown in table IT.
The entries on this sheet represent all the information necessary for the

eveluation of integrals @ to @ » coefficients aj to ms;, and R,
Rp, and Rz listed in appendix A. These coefficients together with the

circulation functions F and G (calculation of which ies discussed at
the end of this appendix) permit evaluation of the determinent ele-
ments A;; to Ej1 and, hence, solution of the flutter determinant as

described in appendix A.

Columns (1) to (5) of the summery sheet contain wing mass and elastic
parameters which, in the present case, were determined experimentally.
A1l of the experimental flutter data shown herein were obtained with the
wings mounted on a fuselasge. (See refs. 30 to 34.) The calculations
were therefore made considering the wings to be cantilevered from the
2
side of the fuselsge which was asssumed fixed. The quantities ay, <%> ’

2
!
(f , and 1 listed at the top of the summary sheet are also measured

velues. Column (6) contains values of B = bl’ the nondimensionalized

r
semichord measured perpendiculsr to the elastic exlis. The nondimension-
alizing value by 1is the semichord b at station 7 = 0.75. Values

of b mey be obtained from the following equations:

b _ Ere - f1p
s (Kl + K2) + (Kl - Ke)a. (51)
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where
¢LE = 1 ten AR ) (B2)
g = ————— + 0 ten Ay (B3) o
CAp(1 + Np)

8 = 1 cos Aea

W
Ky =_cos(ALE - Aea)“
cos Mg
> (Bk)
o . oten = )
Ccos8 ATE
J -
s
> (B5)
ten Arp = ten Ap - %-%55-%
J

The geometrical quentities appearing in these equations are shown_in fig- _
ure 36. Note that in equation (B3) the values of aspeét ratio AP and

taper ratio Ap 1o be used are those obtained by considering the side of

the fuselage to be a reflection plene. In equations (B5) 1t is immaterisl
whether A and A are obtalned by consldering the reflection plane to be
at the side of the fuselage or at the fuselage center line. o

Columns (7) to (12) of the summery sheet (table II) are the ampli-
tudes and slopes of the uncoupled vibretion mode shapes. These mode
shapes may be calculated for the particuler wing by any of the methods o
given in references 36 and 37. However, since flutter speed is not highly .
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sensitive to slight changes in mode shape, the mode shapes for a uniform
cantilever beam may be used if aspect ratio and taper ratio are not too
small. All calculations in the present report were made by using the
first torsion and first and second bendling mode shapes for a uniform canti-
lever beam as glven in table III and figure.37. (Equations governing har-
monic bending or torsionel oscillations of a uniform cantilever beam are
derived in ref. 37.) Table III contains all combinations of these mode

shapes which are required for the calculation of integrals (:) to (:).

Also presented in table III are the integrals of these mode-shape com-
binations which are useful in evaluating the integrals for untapered

wings.

Columms (13) and (14) of table II represent the distributions of
static aerodynamic parameters at & given Mach number.

Calculation of Static Aerodynamic Parameters cza,n and acp

The values of local lift-curve slope C; . are obtained for sec-
b
tions normal to the elastic axis by epplying simplie sweep theory to Cla

values for streamwise sections. Thus,

Cy

Cla,n =

= (B6)

cos Aeg

The use of simple sweep theory together with values of Cza for stream-
wise sections results in Cla,n values different from those obtalned by

direct integration of pressures over sections normel to the elastic axis.
However, the resulting discrepancies are negligibly smell except near the
wing root where deflection amplitudes are small. (See fig. 27(e).) The
use of simple sweep theory should thus cause negligible errors in the
values of the integrals (:) to (:D . The local serodynamic centers eacp
in units of semichord b and measured perpendlcular to the elastic axis '
are found from
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§or - f1m
c—

b/s

- (L + a)Kj|cos Agg + a

aCn,

ac [(Kl + Kg) + (Kl - Kg)a] - (1 + 8)K1p cos Agg + & (BT)

Distributions of CZ@ o @nd acp for all the wings calculated are shown

in figures 27 to 35. As indicated in figures 27(e) and (f) the values of
sz o &nd acp used in the flutter calculations do not always lie on the

curves of Cza n and acy distribution. The integrals (:) to éz)
2

(appendix A) are evaluated numerically by using values of mass, elastic,
and serodynemic parameters at 7 = 0.05 to 0.95, in increments of 0.10.
The required velues of sz’n and acy, therefore are average values

over the n-intervels 0 to 0.10, 0.10 to 0.20, . . . 0.90 to 1.00. These
values do not coincide with the Clm,n and acp distribution curves

near polnts of sharp change. -

Subsonic free stream.- In the case of subsonic free-stream velocity,
the spanwise distribution of C3, 1s found by the method of reference 2k4.

For these subsonic loading calculations, the full wing is consildered.
Thet is, the reflection plane is considered to be at the fuselage center
line, and the presence of the fuselsge is neglected. The effect of the
fuselage on the actual loading is felt primsrily near the wing root.
Since deflection amplitudes are smell near the root, the overall effect

of the fuselage on the integrals @ to @ ghould be negligible. Since

the loading distribution is computed for the full wing including fuselage
intercept and since the distribution only over the wing panel is required
in the flutter calculation, the full-wing distribution of Cj3, 1s plotted,

and values are read off at stations corresponding to 1 = 0.05, 0.15,
. . . 0.95 of the wing penel. (See fig. 38.) For subsonic free-stream
velocity, aecp = -0.5 1s used throughout. -This value corresponds to the

aerodynemlic center at the quarter-chord of a section normal to the elastic
axis.

Supersonic free stream.- For supersonlc free stream, the cases of
subsonic leading edge and supersonic leading edge are considered.

le
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(1) Subsonic leading edge: In the case of supersonic free-stream
velocity and subsonic leading edge, the spanwise distributions of Clg

and ac sare found by the method of reference 25. For these calculations,

the wing is treated throughout as though the side of the fuselage is a
reflection plane. This asssumption seems reasonable since in the linearized
theory of reference 25 the distribution of loading on the wing panel is
dominantly esffected by Mach waves emanating from the wing-fuselsge
Juncture.

When the leading edge 1s subsonic and the trailing edge is super-
sonic, as in sgketch 1,

Side of fuselage

Mach lines

Sketch 1

the expressions for streamwise Cj a and sac take s very simple form

Emp + &
b TE LE (B8)

C?, = CZ =
@ "%l g ten Arp \|EmE - EIE
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Cm, C g2 £ +“VE"3772‘7?
my, _ Crg,1 1 e+, \/bTE” - f1E
- - 2= - 22 _ (29)

ac = — = by - 2bpg + - log
€1, C7'a.,1 2(§TE - by \’gTEQ - §LE2 E1E
32
where E = E 1 - ——— | 4s the complete elliptic Integral of the
tanakﬁg

second kind. Expressions for gLE, gTE, end. tan Arg eare given by

equetions (B2), (B3), and (B5). The numerical subscripts throughout -
refer to the loading ereass in the appropriate sketch. Note that for
this condition ac is a function only of wing geometry and that Mach
number affects Cla only through the function E. Eduations (B8)

and (B9) contein no provision for accounting for the loss of loading
within the Meach cone from the tip leading edge. The procedure for
epplying tip corrections 1s discussed subseguently.

When the leading edge and trailing edge are both subsonic, as in _
sketch 2,

Mach line

Side of fuselsge

Mach lines—————;::;r

Sketch 2
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the loadings indicated by equations (B8) and (B9) must be corrected to
account for the loss of loading behind the root trailing-edge Mach line.
For this condition

3
Cmg, = Cmg,1 + Kmg, 3 (B10)
ac = —cm—a’
C-La.
P
where Cza,,l and Cma.,l are obtained from equations (B8) and (B9), and

N

2
A f \’l - —BZ la
Ko, 5 = 2f EFlop, \(1 - 2 4 - ————— Ky 3
EK tan ALE(gm - gm) EM tan' Erg - &

/

()

2

where K = K} \/1 - Bz is the complete elliptic integral of the
ten®Arg
2

first kind, F{e, \(1l - — B 1s the incomplete elliptic integral of

tan®Arg
the first kind, and

4
M = ————— + Bn (B12)
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r (B13)

g - ———
Ap(l + 7\p)

J
Equetions (Bll) represent only the "symmetric" trailing-edge correction
discussed in reference 25. However, this quantity is comsidered suf- = =
ficiently accurate for present purposes. The integrals in equations (B11)

are evaluated numerically.

For 1 stations near the wing tip the loadings given by equa-
tions (B8), (B9), or (B10O) must be corrected to account for the loss of
loading within the Mach cone from the tip leading edge. When the leading,
edge is subsonlc, as in sketch 3,

EA\\\

Side of fuselage
Mach lines

Sketch 3
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these corrections are made as follows: First, the spanwise locatlons of
points P, S, end L (see sketch 3) are found from the equations

L
tan My + B -
A Zl N 5
Mp = P\ T TP (B14)
tan ATE + B

15 = np + (8w - 5ea)n=nP sin Aea cO8 Aea (B15)

where

b
(bxm - Eea)nenp = (E)n=nP(l - a’ﬂ=nP)K2
and

n, =1 - (gea - gLE)n=l sin Aes cos Aea (B16)

where

(tea - tre) e = (§>n=1(l + oge)iy

(See fig. 36.) The more inboard (measured parallel to the elastic axis)
of the points S and I represents the 17 station at which the tip

effect first begins to be felt.

The load intensity on the wing rises from trailing edge to leading
edge and spproaches infinity st the leading edge. Therefore, if g < nL,

the loss of loading caused by the tip will begin at the trailing edge
where load intensity is relatively low and gradually extend forward into
a region of high load intensity as‘-the tip is approached. The loss of
loading outboard of ng will thus produce a curve of sz,n as a func-

tion of 1 vwhich has negetive curvature as well as negative slope. (See
fig. 39(a).) Now the static aserodynamic loading parameters are intro-
duced into the flutter equations through strip theory which implies that
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the loading has a quasi-two-dimensional character. For a swept wing an
exact stripwise evaluation of loading near the tip would therefore have
questionable significance since nelther the wing plan form nor the pres-
sure distribution is quasi-two-dimensional in that region. In view also
of the difficulty in performing an exact stripwise integration of loading
near the tip, a reasonable falring of the Cza n Curve is considered

adequate, even though this fairing occurs at spanwise locations where
wing deflection is greatest. For the case of ng < 77, (fig. 39(a)),

the approximaste curve used is geometrically derived from that obtalned
by streamwise integration of loading in the tip region. The geometrical
derivation consists of applying a constant stretching factor to the curve
obtained by streamwise integration of the tip loading in order to fit
this curve to the known loading at n = ng. The appropriate equations
for this streamwlse calculation are equations (6), (15), and (26b) of
reference 25. No reflections of Mach lines from plan-form edges are Con-
gsidered. For wing 445, flutter speed determined by using this type of
fairing and that obtained by using exact stripwise integration of tip
loading differed by only 0.6 percent. i -

If ng =N, the curve of Cz has a sharp discontinuity at

n="ng = " (see fig. 39(b).) In this case an accurate representation

of the loading in the tip region can be obtained with the ald of figure 7
of reference 25. This figure gives the loss of 1ift across the tip Mach
line. A straight line is used, as in figure 39(b), to falr the sz n

curve to zero at np. The value of 1p 1s given by

Np = 1+ (gTE - §ea>n=l sin Agg cOS Agg (B17)

If g > Ny, the region of high load intensity near the leading edge
is lost first, so that the curve of sz a ageainst n has a steep nega-
tive slope just outboard of 7y - but has also a positlive curvature (as in
fig. 39(c)). In this case a straight line is used to fair the Cla,n curve
between 71, and 7 = 1. In no case is any loading outboard of 1 =
used in the flutter calculation. -

In genersl, no tip correction was applied to acp since such cor-

rections would occur in only a small region. TFor wing 430, however, the
point 7ng was so far inboard that it was considered necessary to apply

8 tip correction to acp. (See figs. 28(d) and (e).) This correction




F

NACA RM L5TL1O Lo

was obtained in the same manner as the correction for sz Nt That is,
)

the correction was determined from streamwise integratlion of 1ift and
pitching moment from which ac and hence acp were found.

(2) Supersonic leading edge: when the leading edge is supersonic,
as in sketch &4,

Side of fuselsge

Sketch 4

the spanwise distributions of Cla and ac are found by the method of

reference 26. Again the wing is treated as though the side of the fuse-
lage is & reflection plane. Values of Clm n and acp are found from
y

Cilg and ac by applying simple sweep theory as described previously.
The procedure for finding sz and ac 1is as Tollows: First, find the

spanwise locations of points P, O, and Q (see sketch 4) by using the
equations:



t +p -

Np =
tan Arg + B

2p

Mo

- b 1
e AP(1+7\p)B-‘ba.nATE

If point O 1lies on the wing, then for O £ 1 < 1p,

3 -
0y = - ) f
o \IB2 - tanaAIE(ETE _ E-LE) ( 1 ) ng
and
E b I—l 2 - 2 gm <EE;L> ] )
Cing, 52 - tanaALE(gTE _ gLE)aLg(QMl LR ) + j;nl £ CP,ZD at

For mp sns Mo

o ) @R

gTE-EL-E
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(B18)
(B19)

(B20)

o2 )dg (B21)

»2D

3
= Ciq {B22)

Cp,3
%,an)d{l (B23)

a ¢ (B2k)

) \/52 - tan?ps (rm - §1E)|_ My
and
g t
Cmg, = \}52 - mzA:E(ﬁmg _ -Ell;)g[%(ghil_a - gm2) + J;Ml:e E<::—:D)d€ + \[;;ZE l(gz’;) aE

-ETE-gLE

la
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For Mg 1 = Mg

51

~ b ) &y, [Cp,2 Emg (33_>
Cig = \,32 - tanZAry (E'EE - §LE) ’:(EMZ gLE) i ‘/;Mg (CP:2D>d§ ' “/;Ml Cp, 2D dg} (B23)

and

Ong, 3

- i 2 . by Eg,2> bz (Gp,s>d§ e - (526)
\p2 - tanzAI.E(g’EE - Em)zl_a\inz ;m) * “/;Hg §<CP @ o ~/; ' Cp, 2D g -tz o

For "]Q=-<.Tl§l;

Ci, =

r

L

&

and

\lﬁa ;-tanzAIE (ETE - &1

My

] C t1x) + fg T (g—iiz))dg (27)

M2

4 [1 2 2 i (Cp,z ) trm
= =Ep” - & + g{——=Jat]| - ———¢C (B28)
cmu Ba - 'l:a.naAq_;E(ng = §I.E)2 2(M2 1 ) ‘/;Ma Cp,g) EtE - t1E ta

where, as before,

4
§E=m+ntanATE

3 (B29)




52
and
§Ml = B
Ey, = tan Arp + B(1 - n)
Also,
2
Cp,1 = = cos~1{R + !
Cp. o \ .
P,2 - = COB_l E T
,2D 7 £ - tan Nymn
Cp,3 - Cp,1 + CP;2 -
CP:Z) CP:ZD CP;ED
where -

R...

B
S =(R -
T =

= —25 tanlArg - 1

1)tanAr g

tan Argp + (2;3 + tan ALE)(l - )

J
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(B30)

(B31)

(B32)

If polnt O 1lies behind the tralling edge, then np > g’ and Cza,
and Cp, are obtained as follows:

For O§n§nq,
for T]Q§Tl§ﬂp,

Ci, and Cp, are given by equetions (B21) and (B22);
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Cy. = (B33)

(B3k4)

rojH-

Cma’ = X
\/52 - tan®Arg

A

For np = n 1, Cy,, &nd Cmy ave given by equations (B27) and (B28).

A1l of the integrals in the foregoing expressions for Ci3, and Cm¢
are evsluated numerically.

It should be noted that for the case of supersonic leading edge if
g < 7y, 1O seperate tip correction is necessary. Approximately correct
values of sz,n and acp in the tip region (n > ns) are obtained by
applying simple sweep theory to the values of Clm and ac resulting

from equations (B23) to (B28). Loedings of this type are shown in
figures 28(e) and 34(d). If ng > ny, then the Clq.q CUTVE is faired

2
with a straight line between 77, and 7 = 1. (See fig. 39(c).) 1In this
latter case, equations (B23) to (B28) need not be evaluated.

Circulation Fumctlons

As mentioned in the body of this paper, the circulation functions F
and G, which eppear in the determinsnt elements listed in eppendix A, are
obtained from serodynamic coefficients given in reference 27 for two-
dimensional airfoils oscillaeting in compressible flow. (Similar coeffi-
cients for supersonic speeds only are slso given in ref. 38.) These coef-
ficients 1lg, 1lz, mg, mp &re defined in reference 27 so that

P = -2bpv2(hLE7.Z + eza) (B35)
and

My = (2b)2pv2(hLEmz + Gma) (B36)
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in the notation of the present paper, where hiyg is the value of trans-

lation deflection at the leading edge. Now another expression for 1lift
in the case of two-dimensional compressible flow may be obtained from

equation (6) by deleting the terms containing o and T. Thus,

G
P = -npb=(v + h - bab) - Clq,nPVEC|VE + h + b< ;:n + acp - a)e (B37)

where
\
_ en
Czor,,n "B
y for M <1
L
acp = - -2—
J
and
N
Cla,n = 8
for M> 1
acp = 0

Expressions for the circulation functions in terms of the aerodynamic
coefficients of reference 29 may be obtained by equating expressions (B35)
end (B37). Equating the two expressions for P (eqs. (B35) and (B37)),

using

6 = iwd
h = igh _
8 = -afe
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for simple harmonic oscillation, and noting that

lead to

g élb--ez-(l+a.)

C
h [ .2(n h
Cla.,nFCe - Cla,,nGckm'[; ¥ e(.Et.a'ﬁ + acp - a)] = :tkm-2<; - aB) + [; - 8(1 +a.)] 17" + 201y

and

2n

Cy
h " 1"
C1q, nFCEnr %+ e<—°ir£‘- + &ep - a) + C1q,0C8 = -x0kny + [; -e(1+ a.)] 1, + 201g

where

1g = la(M,knr) = la' + ilg"

1z = 1z(M,knr) 15" + 115"

Considering only the pitching oscillation, that is, putting h=0,

permits

Fo -

simplification to
C
)

kny @2 4 acp - alGp = [2'La,' - (L +a)ly' - ﬂknraa]
ex la,n

Cy

—;Ln-+ acn - & FC + Ggo = _l [27.@" - (1+ a.)lz" - :tknr]

lg,n
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or

[21'-(1+a)1 '] +knrfz_°"1—n-+a.c -a[zl o1+ el "_-l-:tknra uza"n-*-ae
@ z ; pw n a z "\ o n

Fgo = (B38)
c 1 2 Cia,n 2
R e
and
[2Za," - (1 +8)1"| - knr(c—;%ﬂ + acy - a)[Z'L“' -+ a.)lg_'] - nkny + n:knr_;a.<c—;m + acp - a)
Gg = ' (339)

(o} .. —\2
2f ta,n
Cla,,nl"'knr - + acp - 4

Analogous expressions for Fp and Gp could be obtained by equeting )
expressions for pitching moment Mgy, instead of 1ift P. It was indi-

cated previously 1n this report that use of the preseht method for pre-
dicting flutter characteristics should probably be restricted to cases
for which k,, 1is moderstely small. Therefore, the knr3 term in equa-

C
1
tion (B39) may be dropped. Furthermore, the factor ( ;’ Z + acy - a)

does not vary greatly with Mach number except in the immediate vicinity
of M= 1, and this vicinity is inaccessible to the present method.
Therefore, since this factor is always multiplied by kpy or knra,

only small error will be introduced into the circuletion functions by

Cq
taking throughout ( 2:,n

+ acp - a> = %, which is the incompressible

flow value with a = O. The value a =0 'implies torsional oscillation
about the midchord. Equations (B38) and (B39) then reduce to

2

2
oy
“la,n|t ¥ (—e-

21y - 1z'] + 5521@" - 1" ) - = “or
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) e ) me
2
Cza,n 1+ (E%£>

These expressions for Fp and Gg are independent of wing parameters

and depend only on Mach number M and reduced frequency knr. As men-
tioned in the body of this report, when the two-dimensional circulation
functions Fo and Gp are used in flutter calculations for three-

dimensional wings, the functions are defined by the Mach number normal
to the leading edge. Thus Cg Dbecomes

Cc = CCQ%LE,knr) = FC(MIE’knr> + iGC(MIE:knr)

A typical comperison of Fg and Gg calculated from equations (BLO)
and (B41) with those obtained from equations (B38) and (B39) is shown in
figure 40. Values of Fy and Gy were obtained from equations (B38)
and (B39) for two positions of aerodynamic center: acp = O (the two-
dimensional supersonic value) and acp = -0.325261 (the value at the
station 1 = 0.75 of wing 445 at M = 1.75). The results in both cases

closely spproximate the results from equations (B4O) and (B41l). The 4if-
ferences between the three sets of Fp and Gge curves shown in figure 40

would result in less than 1 percent difference in the calculated flutter
speed for wing 445. Since calculated flutter speed is only moderately
sensitive to small changes in the circulation function values (see fig. 3),
the clrculation functions used throughout this Iinvestigation were cal-
culated from the simplified equations (B4O) and (Bh41).

Some typical curves of Fn end G eare shown in figure 41, and
the combinations (2Zm' - IZ') and (2Za" - ZZ") used in equations (B4O)
and (B4l) are plotted in figures 42 and 43, respectively.
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TABLE I

SUMMARY OF CALCULATED FLUTTER CHARACTERISTICS FOR SEVERAL WINGS

l}alculations made by use of the complex circulation function C = %(FI + iGI)]

{a) Wings with taper ratioc A = 0.6

Wing M45R

Wing 445 Wing Wh45F Wing 245 Wing 645
A=ly A =b5% | A=l Ac/h=ll-5°; A=l Ac/h=1+5°; A =20y Ac/,,=h5°; A = 6.4 Ac/h=h5°;
p = 0.003800 '2’111%; p = 0.005000 'ngt“ p = 0.002378 SBE; | o = 0.003900 :Ill"f;t o = 0.003500 .:Tlll‘.gt_;
M Vg = 735.0 £ Vg = 80.0 £ Vg = 928.7 £, Vg = 650.4 £b; Vg = 9o1.1 £

oy = 2,100 ToLm0e | g 1, zallans | o Lo 06 Zellens | o . 1,665 Tallans | g . 3,7 relens

g =% (s = &8 |= |8 8|~ [¥ |8 =
o] 1.150 | 0.434% | 0.1408 | 1.125 [0.605 | 0.0895 | 1.132 | 0.299 | 0.0786L 4 1.070 | 0.337 | 0.1063
5 1.129 | 436 [ .1kkk[1.103 | .606 | .0915|1.106| .299 [ .0800 1.045 | 338 .1092
.75 1.092| 438 | .1496|1.065 | .610| .095% | 1.062| .300| .0833}1.24h4 (0.918|0.2005|1.00% | 340 | .l1ik2
1.15470 | L300 | 46T | 1347|1363 | 676 | .0831|1.186| .315| .0T9% | 1.668| .953 | .1549|1.06k [ .360 | .1136
L.bhak2l | 1724 | 473 L1019 179 328 .0656]2.198|1.055( .1302|1.366| .362| .0893
1.75- 1.866) .7185| .1576 -
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SUMMARY CF CALCULATED FLUTTER CHARACTERISTICS FOR SEVERAL WINGS

TABLE I.- Continued

(a) Concluded
Wing 52 Wing 430 Wing 40o Wing LOOR
A=b; A pn o= 52.5% Amb; Ac/-,+=30°; A=by Ap =0 A-:ll;Ac/hno;
p = 0.002700 %t-- p = 0.003700 %-J;Eﬁ-,- P = 0.002378 :T’;Eﬁr? p = 0.003100 ;ﬁﬁﬁ;
M Vg = 988.7 £ Vg = 69h.7 £ Vg = 976.5 £ g = 2.5 b,
ay, = 2,300 =5e8 o, = 2,158 _r%:n;a_ = 2,463 ;ﬂ% w, = 1,982 ;%B_B'
I el 0 Bl B o el . 0 O
0 1.250 | 0.5%0 | 0.2646 | 1.398 | 0.586 | 0.1278 | 1.389 | 0.480 | 0.007
.5 -~ | 1.228 .530 1676 | 1360 585 1309 | 1.350 480 .1000
.15 1.06L | 0.438 | 0.1189 | 1.186 | .3e7 | .1729 | L.297 | .%84 [ .1373 | 1.263 480 | .1052
1.15470 - 1.608 | .511 | .1233 [ 2.640 | .753 | .0870 [ 1.549 | 549 | .0995
11815 | 1113 | 455 | L1185
1.41401 | 1.340 b0 .L0L7 | 1.882 .680 L1405 | 4,100 | 1.469 .1093 | 1.919 56l 0827
1.6 1.570 279 .0885 ——
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TARLE I.~ Concluded

SUMMARY OF CATCULATED FLUTTER CHARACTERISTICS FOR SEVERAL WINGS

{b) Wings with taper ratic A = 1.0

Wing 451

Wing 400OL

Wing TOOL

A= lI- Ac/,_|_=lt-5,

A.:]-I-; Ac/uzo;

.A.::r{38 A/].|.=0.r

p = 0.003200 20K ; p = 0.002578 E‘—11"-5—; = 0.005500 S1M
" Vg = gub.7 £y = 8e8.5 £ = 84b.8 g’gc,

ay = 2,552-@-.1“‘;—:23 a, = 2,048 Zedlans ay = 2,271 Fedlans

ol | | w e | % | & |
0 1.166 0.309 0.0961 1.h75 0.k12 0.0575 1.310 0.%98 0.0755
5 1.142 .308 .0978 1.430 A11 .0592 1.257 598 0787
.75 1.100 307 1013 | 1.353 RINES L0625 [ 1.168 400 .0851L
1.15470 1.22h 339 .1005 1.860 -500 -0553 2.264 .T56 L0831
o 0%, TN (NNUCCUUI, UG [ — 2.330 .533 Oh70 | 3.945 768 0485
1.35 1.566 381 0883 | commm | mmmee | mmmmmm | amea ———— | mm——
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TAELE II

BAMFLE STMMARY GHEET SHOWING INFORMATION REQUIRED FCR FLUATER CALCULATIONS

Susnary Shest - Wing 4OOR
A-h;k=0.6;Ac/1|_-0;

Ap = 3.30; My = 0.65T; tam Agg = 0

(R2)® = 0.00em36; (22)" = 2.0096; @ = 1960.3 rostans/oec

1 = 04458533 £1; by = 0.1209635 £1; p = 0.005100 slug/cu ft

Btatlon | WiNg mess ond stiffueas |Mondimensional Wing vibration mode shapes parameters for
‘ (=) -2

(1) (2) G| (6) {7} 8 1 (9 (10) (11) (2) (13) ()
LI YN S I :B-.:-;r- = | & ny ;1'111 by %2 Clgn | %
0.05 (0.03451 0.340(0.22%[-0.0500| 1.320h97  [0.07846|1.56596{0.004202k| 0.1607H }-0.0253%5L| -0.97005 |3 .863575 | -0 .003256k
A5 |o.0a38e | 337 L2221 -.0h99|  l.276he6 23345 |1.52740| 036832 | .h7e9s| -.18879 |-2.12604|3.89%958| -~.007h1LS
25 | .01268 | .330| .219| ~.0AO4| 1.2303%% 58268145123 097280 | .T280%| -.A4L726 | -2.08648|3.906502| ~.0086348
.35 | 01197 | 300 .217| -.08B3| L.184o8h 52250 |1.3%933| .1.8086 .93588| -.61768 | -1.5985713.95547h | -.00T6LLT
45 ) .0l093 | 2| 215 -~.065]  1.138213 L5111k 280093 | 1.096Lh | -.TLE99 | -.31353|3.95T91e| -.0005307
55 | 01002 | .278 .213] -.0%kl| l.o9elhe 76041 |1.02005| 39907 |L1.2LT70| -.5Ti27 | 1.2hW43hk|5.544466| -.0338626
.65 | .00927 | 284 .211] -.0%09| 1l.oG0TL .B526h| 820 .52519 | 1.298719| -.47029 | 2.73860|3.61%0%5] -.07T76153
15 | -00853 | .308] .209| -.0370|  1.000000 92388 .60110| .65T73 | L.3h710| -.13507 | 3.80150(3.246049| -.1338290
85 | .00770 | .306( .207| -.0%23 955929 97237| .36669| .T93ET |1.36998| 2915k | h.75626{2.670638| ~.202490L
.95 | .00668 | .284%| .205| -.0270 907658 99692 .12322| 93117 |1.3763%| .76093 | h.T7088[1.631495| -.2817228

Malues 1istsd are for vniform captilaver beam,
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MOME-SBAPE COMETRATIONS FOR UMIFGAM CANTILIVER FRAN

UEED IN FLUFTEN GALCULATTONG

[r1zot toraton md £1rst ant meacat veading moses]

(1) ] (2 (3) ) {9) (6) n {8) (o | | @ (12) (z) | () {(13) | (8) | (17) (18 (1% | (=) | (1) (e2) ~
3 By | 2 Ay LW "R 2 (Do ' To | S
““mﬁ?‘ﬂu de | me ol we (gRe [Jw (P | Wt e ww gEn | ot gEn |Gl
0.0% ]0.07T56] 1. 56596 10.00h25 | 0 155 T% |--0.02955 | -0.9700% 1000616 [0. 12287 k:uuu}h 000552 |~0.00199 | -0.07611 [0.00872 |-0. 03570 | 00000 | 0.000TS | -2, 00011 |-0.00k16 |0.0005 | 0.02453 |-D.00k30
15| JEhs|Loeho| (03683 ATegm| -.8879]-2.10608] LoBes0| (38657 -00860] ,10hL| -.OMNGT| -.k9652| .0%6RS| -.20836) .00136| .o17hEZ| -.00698| -.OTBBL| .C306k| h0L3S| -.08000
25| -38068|1.0m235] 09726 -m -.h17e6] o.o0k8| dhekh| 55556 057123 | L2THEL| -.17968| -.8Tho9| .1h118| -.G0m5h) L009kE| omEe| -.0L030| -.0ooks | J17RIL| .9%h06| -.307T9
5| seego(1.35553| .18086| .oms08| -.61768|-1.29857 .e730L| .65580( .0hm0| MB900| ..meamh| -.B3nas| chesd| -.0e7e8| .oserl) 66| -.auT| 28912 ews| .gepo| -.a7E0T
“inf Sghod Lagkk ] 2ess|ropah| .misgg| -zl M| roms| | ks | miag| - eses| -.conée| .oreh| -.0senolk .0toos] uo70| -.e0ess| -.oBem ¢ suror| | ka0 | -.g876
53| -TE0W1{1.00010| .3930T|1-30T70| -.67127) 1.2MAA 978 | TTOTS) 3O3R6| .92003| -.5l0hs| .oM636| MOTIL| -.68e80| .1306| AB395| -.96T88| MGG6 ( Asobo| .Gmh2| -.ELTAL
65| .Boath| .GeoTh| .2em5|1.k087%] -.WTCe0| 2.73660| .72699| 69980 LATEO|L.10TRO| -h0099| 2.5350k| 3ok | ~.3899| .e7ste| SBe11] -.ohdeg| 1.A3R49 | &2117|-1.2879k | -.61081
-T3| -Se388] 6ou10[ LEITT|1.ATO| -.15207( 3.8 Bm3| .mmh| 60T66|1.2036| -askTs| 3.59ma8( (39556| -.08119) 261 B2603| -.0000m| 2.7956 | .mlek| -.mos6a| -,18195
85| GTBT| 36669) JT95TE|1.36998]) .e9uvk! h.5AGRE| .ghzo| 60| LITLS3[L.Ean3| .e8pu8| hazoT| 29106 _m L63008)1.0075% |  .5k1| 5.60638| .08m00f 1.32833) .Took0
: 5 .'meeL 95:1.11i 13765 .TS093] & I 99535“ J1eaby |9eﬁjn Loan| oo kT 2w 0o376]' .as708]1.ems] L 70mm8| h.kkeno b oapoar] B.630m 1.ohrso
% s50000| .oe06| .3383n| .50sy| -.09083| 1.3o760| hese| -.39686| .enoe] Aooer| -omSo| 1.18m09| .hgoo| Mool -.10e6s
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bound vortex (strength associated with Ciq n= 2r)
’

elastic axls

point of application of
downwash boundary condition

-
4
"

-1\_\ +

L(——s.cn = e ——e— 8

‘e—d=i

Ad-a=4-a \midchord

(a) Relations used in references 22 and 33.

bound vortex (atrength proportional to cza n)
L ]

elastic axis

point of application of
downwash boundary condltion

+ac, -4 r\\\\\\--uu.d.cshor':].

(b) Relations used in present method.

Figure 1.- Geometric reletions assoclated with the spplication of the
downwash boundsry condition.
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Figure 4.- Variation of flutter speed with Mach mumber for wing M}ﬁF. For celculated points
p = 0.003000 slugsfcu ft.
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Figure 8.- Variation of flutter speed with Mach number for wing 452. For celculated points
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Figure 10.~ Variation of flutter speed with Mach number for wing 400.

For celculated points

p = 0.002378 slugs/cu ft.
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"Figure 13.- Variation of flutter speed with Mach number for wing L4oo1.
For calculated points p = 0.002378 slugs/cu f£t.
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Figure 14.- Variation of flutter speed with Mach number for wing T001.

For calculated points

p = 0.005500 slugs/cu ft.
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Figure 15.- Variation of flutter frequency with Mach number for wing 445.

p = 0.003800 slugs/cu ft.

For calculated points
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Figure 16.- Variation of flutter frequency with Mach mmber for wing U45F. For caelculated
points p = 0.003000 slugs/cu ft.
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Figure 17.- Variation of flutter frequency with Mach number for wing M45R. For calculsted.

points p = 0.002378 slugs/cu ft.

1.5

OTTLGT WM VOVN

¢g




8l

1.3

1.2

5

NACA RM I5T7L10

A
o |© ‘JTE ©
o ©
o ° To I
o 4//’/1
-

O Experiment

Fc
——C = 2(F, + 1G7)
Pr I I

o oo ViE o2

+ 10
V2 + o2
A ¢ = Fg + 10
.8 .9 1.0 1.1 _ 1.2 1.3 1.h 1.5
M -

Figure 18.- Variation of flutter frequency with Mach number for
wing 245. For calculated points

p = 0.00390Q slugs/cu ft.
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Figure 19.- Variation of flutter frequency with Mach number for wing 645. For calculated points
p = 0.0035Q00 slugs/cu ft.
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Figure1|20-- ‘Varlation of flutter frequency with Mach number for wing 452. For calculated points
' p = 0.002700 slugs/cu £t.
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Figure 21.- Veriation of flutter frequency with Mach number for wing %30.

p = 0.003700 slugs/cu ft.

k>
S o
o | &0 e
o /
Mo //
i T — —]
ooy 3 v
o) o
d®
Q Expapiment
—¢ = 58
- F..I. (FI + mI)
2 2
O ox _C—L‘}ﬂ. + 10
VeF + o
A ¢g=¥y+10
V 0 =Py + 16,
o 1 2 o3 4 5 b o7 .8 <9 1.0 1.1 1.2 1.3 1

For calculated points

OTILET WY VOVN

lg




1.5

1.L

1.3

1.2

C Experiment

Fe
~—3—G = ;;(FI + 161)

4
- o O g
0 g c-@O
[} ! ©
@ elc) o
2 4° |
1 .2 3 -l 5 .6 T 8 9 1.0 1.1 1.2 1.3 1 1.5

M

Figare 22.- Variation of flutter frequency with Mach number for wing 400,

p = 0.002378 slugs/cu ft.
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